Files
HauntedBloodlines/Assets/Obi/Scripts/Common/Backends/Burst/Constraints/Stitch/BurstStitchConstraintsBatch.cs
2025-05-29 22:31:40 +03:00

152 lines
5.7 KiB
C#

#if (OBI_BURST && OBI_MATHEMATICS && OBI_COLLECTIONS)
using UnityEngine;
using Unity.Jobs;
using Unity.Collections;
using Unity.Collections.LowLevel.Unsafe;
using Unity.Mathematics;
using Unity.Burst;
using System.Collections;
namespace Obi
{
public class BurstStitchConstraintsBatch : BurstConstraintsBatchImpl, IStitchConstraintsBatchImpl
{
private NativeArray<float> stiffnesses;
public BurstStitchConstraintsBatch(BurstStitchConstraints constraints)
{
m_Constraints = constraints;
m_ConstraintType = Oni.ConstraintType.Stitch;
}
public void SetStitchConstraints(ObiNativeIntList particleIndices, ObiNativeFloatList stiffnesses, ObiNativeFloatList lambdas, int count)
{
this.particleIndices = particleIndices.AsNativeArray<int>();
this.stiffnesses = stiffnesses.AsNativeArray<float>();
this.lambdas = lambdas.AsNativeArray<float>();
m_ConstraintCount = count;
}
public override JobHandle Evaluate(JobHandle inputDeps, float stepTime, float substepTime, int substeps)
{
var projectConstraints = new StitchConstraintsBatchJob()
{
particleIndices = particleIndices,
stiffnesses = stiffnesses,
lambdas = lambdas,
positions = solverImplementation.positions,
invMasses = solverImplementation.invMasses,
deltas = solverImplementation.positionDeltas,
counts = solverImplementation.positionConstraintCounts,
deltaTimeSqr = substepTime * substepTime,
activeConstraintCount = m_ConstraintCount
};
return projectConstraints.Schedule(inputDeps);
}
public override JobHandle Apply(JobHandle inputDeps, float substepTime)
{
var parameters = solverAbstraction.GetConstraintParameters(m_ConstraintType);
var applyConstraints = new ApplyStitchConstraintsBatchJob()
{
particleIndices = particleIndices,
positions = solverImplementation.positions,
deltas = solverImplementation.positionDeltas,
counts = solverImplementation.positionConstraintCounts,
sorFactor = parameters.SORFactor,
activeConstraintCount = m_ConstraintCount
};
return applyConstraints.Schedule(inputDeps);
}
[BurstCompile]
public struct StitchConstraintsBatchJob : IJob
{
[ReadOnly] public NativeArray<int> particleIndices;
[ReadOnly] public NativeArray<float> stiffnesses;
public NativeArray<float> lambdas;
[ReadOnly] public NativeArray<float4> positions;
[ReadOnly] public NativeArray<float> invMasses;
[NativeDisableContainerSafetyRestriction][NativeDisableParallelForRestriction] public NativeArray<float4> deltas;
[NativeDisableContainerSafetyRestriction][NativeDisableParallelForRestriction] public NativeArray<int> counts;
[ReadOnly] public float deltaTimeSqr;
[ReadOnly] public int activeConstraintCount;
public void Execute()
{
for (int i = 0; i < activeConstraintCount; ++i)
{
int p1 = particleIndices[i * 2];
int p2 = particleIndices[i * 2 + 1];
float w1 = invMasses[p1];
float w2 = invMasses[p2];
// calculate time adjusted compliance
float compliance = stiffnesses[i] / deltaTimeSqr;
// calculate position and lambda deltas:
float4 distance = positions[p1] - positions[p2];
float constraint = math.length(distance);
// calculate lambda and position deltas:
float dlambda = (-constraint - compliance * lambdas[i]) / (w1 + w2 + compliance + BurstMath.epsilon);
float4 delta = dlambda * distance / (constraint + BurstMath.epsilon);
lambdas[i] += dlambda;
deltas[p1] += delta * w1;
deltas[p2] -= delta * w2;
counts[p1]++;
counts[p2]++;
}
}
}
[BurstCompile]
public struct ApplyStitchConstraintsBatchJob : IJob
{
[ReadOnly] public NativeArray<int> particleIndices;
[ReadOnly] public float sorFactor;
[NativeDisableContainerSafetyRestriction] [NativeDisableParallelForRestriction] public NativeArray<float4> positions;
[NativeDisableContainerSafetyRestriction] [NativeDisableParallelForRestriction] public NativeArray<float4> deltas;
[NativeDisableContainerSafetyRestriction] [NativeDisableParallelForRestriction] public NativeArray<int> counts;
[ReadOnly] public int activeConstraintCount;
public void Execute()
{
for (int i = 0; i < activeConstraintCount; ++i)
{
int p1 = particleIndices[i * 2];
int p2 = particleIndices[i * 2 + 1];
if (counts[p1] > 0)
{
positions[p1] += deltas[p1] * sorFactor / counts[p1];
deltas[p1] = float4.zero;
counts[p1] = 0;
}
if (counts[p2] > 0)
{
positions[p2] += deltas[p2] * sorFactor / counts[p2];
deltas[p2] = float4.zero;
counts[p2] = 0;
}
}
}
}
}
}
#endif