Files
HauntedBloodlines/Assets/Obi/Scripts/Common/Backends/Burst/Constraints/Pin/BurstPinConstraintsBatch.cs
2025-05-29 22:31:40 +03:00

280 lines
14 KiB
C#

#if (OBI_BURST && OBI_MATHEMATICS && OBI_COLLECTIONS)
using UnityEngine;
using Unity.Jobs;
using Unity.Collections;
using Unity.Collections.LowLevel.Unsafe;
using Unity.Mathematics;
using Unity.Burst;
using System.Collections.Generic;
namespace Obi
{
public class BurstPinConstraintsBatch : BurstConstraintsBatchImpl, IPinConstraintsBatchImpl
{
private NativeArray<int> colliderIndices;
private NativeArray<float4> offsets;
private NativeArray<quaternion> restDarbouxVectors;
private NativeArray<float2> stiffnesses;
public BurstPinConstraintsBatch(BurstPinConstraints constraints)
{
m_Constraints = constraints;
m_ConstraintType = Oni.ConstraintType.Pin;
}
public void SetPinConstraints(ObiNativeIntList particleIndices, ObiNativeIntList colliderIndices, ObiNativeVector4List offsets, ObiNativeQuaternionList restDarbouxVectors, ObiNativeFloatList stiffnesses, ObiNativeFloatList lambdas, int count)
{
this.particleIndices = particleIndices.AsNativeArray<int>();
this.colliderIndices = colliderIndices.AsNativeArray<int>();
this.offsets = offsets.AsNativeArray<float4>();
this.restDarbouxVectors = restDarbouxVectors.AsNativeArray<quaternion>();
this.stiffnesses = stiffnesses.AsNativeArray<float2>();
this.lambdas = lambdas.AsNativeArray<float>();
m_ConstraintCount = count;
}
public override JobHandle Evaluate(JobHandle inputDeps, float stepTime, float substepTime, int substeps)
{
var projectConstraints = new PinConstraintsBatchJob()
{
particleIndices = particleIndices,
colliderIndices = colliderIndices,
offsets = offsets,
stiffnesses = stiffnesses,
restDarboux = restDarbouxVectors,
lambdas = lambdas.Reinterpret<float, float4>(),
positions = solverImplementation.positions,
prevPositions = solverImplementation.prevPositions,
invMasses = solverImplementation.invMasses,
orientations = solverImplementation.orientations,
invRotationalMasses = solverImplementation.invRotationalMasses,
shapes = ObiColliderWorld.GetInstance().colliderShapes.AsNativeArray<BurstColliderShape>(),
transforms = ObiColliderWorld.GetInstance().colliderTransforms.AsNativeArray<BurstAffineTransform>(),
rigidbodies = ObiColliderWorld.GetInstance().rigidbodies.AsNativeArray<BurstRigidbody>(),
rigidbodyLinearDeltas = solverImplementation.abstraction.rigidbodyLinearDeltas.AsNativeArray<float4>(),
rigidbodyAngularDeltas = solverImplementation.abstraction.rigidbodyAngularDeltas.AsNativeArray<float4>(),
deltas = solverImplementation.positionDeltas,
counts = solverImplementation.positionConstraintCounts,
orientationDeltas = solverImplementation.orientationDeltas,
orientationCounts = solverImplementation.orientationConstraintCounts,
inertialFrame = ((BurstSolverImpl)constraints.solver).inertialFrame,
stepTime = stepTime,
substepTime = substepTime,
substeps = substeps,
activeConstraintCount = m_ConstraintCount
};
return projectConstraints.Schedule(inputDeps);
}
public override JobHandle Apply(JobHandle inputDeps, float substepTime)
{
var parameters = solverAbstraction.GetConstraintParameters(m_ConstraintType);
var applyConstraints = new ApplyPinConstraintsBatchJob()
{
particleIndices = particleIndices,
positions = solverImplementation.positions,
deltas = solverImplementation.positionDeltas,
counts = solverImplementation.positionConstraintCounts,
orientations = solverImplementation.orientations,
orientationDeltas = solverImplementation.orientationDeltas,
orientationCounts = solverImplementation.orientationConstraintCounts,
sorFactor = parameters.SORFactor,
activeConstraintCount = m_ConstraintCount,
};
return applyConstraints.Schedule(inputDeps);
}
[BurstCompile]
public unsafe struct PinConstraintsBatchJob : IJob
{
[ReadOnly] public NativeArray<int> particleIndices;
[ReadOnly] public NativeArray<int> colliderIndices;
[ReadOnly] public NativeArray<float4> offsets;
[ReadOnly] public NativeArray<float2> stiffnesses;
[ReadOnly] public NativeArray<quaternion> restDarboux;
public NativeArray<float4> lambdas;
[ReadOnly] public NativeArray<float4> positions;
[ReadOnly] public NativeArray<float4> prevPositions;
[ReadOnly] public NativeArray<float> invMasses;
[ReadOnly] public NativeArray<quaternion> orientations;
[ReadOnly] public NativeArray<float> invRotationalMasses;
[ReadOnly] public NativeArray<BurstColliderShape> shapes;
[ReadOnly] public NativeArray<BurstAffineTransform> transforms;
[ReadOnly] public NativeArray<BurstRigidbody> rigidbodies;
public NativeArray<float4> rigidbodyLinearDeltas;
public NativeArray<float4> rigidbodyAngularDeltas;
[NativeDisableContainerSafetyRestriction][NativeDisableParallelForRestriction] public NativeArray<float4> deltas;
[NativeDisableContainerSafetyRestriction][NativeDisableParallelForRestriction] public NativeArray<int> counts;
[NativeDisableContainerSafetyRestriction][NativeDisableParallelForRestriction] public NativeArray<quaternion> orientationDeltas;
[NativeDisableContainerSafetyRestriction][NativeDisableParallelForRestriction] public NativeArray<int> orientationCounts;
[ReadOnly] public BurstInertialFrame inertialFrame;
[ReadOnly] public float stepTime;
[ReadOnly] public float substepTime;
[ReadOnly] public int substeps;
[ReadOnly] public int activeConstraintCount;
public void Execute()
{
for (int i = 0; i < activeConstraintCount; ++i)
{
int particleIndex = particleIndices[i];
int colliderIndex = colliderIndices[i];
// no collider to pin to, so ignore the constraint.
if (colliderIndex < 0)
continue;
int rigidbodyIndex = shapes[colliderIndex].rigidbodyIndex;
// calculate time adjusted compliances
float2 compliances = stiffnesses[i].xy / (substepTime * substepTime);
// project particle position to the end of the full step:
float4 particlePosition = math.lerp(prevPositions[particleIndex], positions[particleIndex], substeps);
// express pin offset in world space:
float4 worldPinOffset = transforms[colliderIndex].TransformPoint(offsets[i]);
float4 predictedPinOffset = worldPinOffset;
quaternion predictedRotation = transforms[colliderIndex].rotation;
float rigidbodyLinearW = 0;
float rigidbodyAngularW = 0;
if (rigidbodyIndex >= 0)
{
var rigidbody = rigidbodies[rigidbodyIndex];
// predict offset point position:
float4 velocityAtPoint = BurstMath.GetRigidbodyVelocityAtPoint(rigidbodyIndex, inertialFrame.frame.InverseTransformPoint(worldPinOffset), rigidbodies, rigidbodyLinearDeltas, rigidbodyAngularDeltas, inertialFrame.frame);
predictedPinOffset = BurstIntegration.IntegrateLinear(predictedPinOffset, inertialFrame.frame.TransformVector(velocityAtPoint), stepTime);
// predict rotation at the end of the step:
predictedRotation = BurstIntegration.IntegrateAngular(predictedRotation, rigidbody.angularVelocity + rigidbodyAngularDeltas[rigidbodyIndex], stepTime);
// calculate linear and angular rigidbody weights:
rigidbodyLinearW = rigidbody.inverseMass;
rigidbodyAngularW = BurstMath.RotationalInvMass(rigidbody.inverseInertiaTensor,
worldPinOffset - rigidbody.com,
math.normalizesafe(inertialFrame.frame.TransformPoint(particlePosition) - predictedPinOffset));
}
// Transform pin position to solver space for constraint solving:
predictedPinOffset = inertialFrame.frame.InverseTransformPoint(predictedPinOffset);
predictedRotation = math.mul(math.conjugate(inertialFrame.frame.rotation), predictedRotation);
float4 gradient = particlePosition - predictedPinOffset;
float constraint = math.length(gradient);
float4 gradientDir = gradient / (constraint + BurstMath.epsilon);
float4 lambda = lambdas[i];
float linearDLambda = (-constraint - compliances.x * lambda.w) / (invMasses[particleIndex] + rigidbodyLinearW + rigidbodyAngularW + compliances.x + BurstMath.epsilon);
lambda.w += linearDLambda;
float4 correction = linearDLambda * gradientDir;
deltas[particleIndex] += correction * invMasses[particleIndex] / substeps;
counts[particleIndex]++;
if (rigidbodyIndex >= 0)
{
BurstMath.ApplyImpulse(rigidbodyIndex,
-correction / stepTime * 1,
inertialFrame.frame.InverseTransformPoint(worldPinOffset),
rigidbodies, rigidbodyLinearDeltas, rigidbodyAngularDeltas, inertialFrame.frame);
}
if (rigidbodyAngularW > 0 || invRotationalMasses[particleIndex] > 0)
{
// bend/twist constraint:
quaternion omega = math.mul(math.conjugate(orientations[particleIndex]), predictedRotation); //darboux vector
quaternion omega_plus;
omega_plus.value = omega.value + restDarboux[i].value; //delta Omega with - omega_0
omega.value -= restDarboux[i].value; //delta Omega with + omega_0
if (math.lengthsq(omega.value) > math.lengthsq(omega_plus.value))
omega = omega_plus;
float3 dlambda = (omega.value.xyz - compliances.y * lambda.xyz) / new float3(compliances.y + invRotationalMasses[particleIndex] + rigidbodyAngularW + BurstMath.epsilon);
lambda.xyz += dlambda;
//discrete Darboux vector does not have vanishing scalar part
quaternion dlambdaQ = new quaternion(dlambda[0], dlambda[1], dlambda[2], 0);
quaternion orientDelta = orientationDeltas[particleIndex];
orientDelta.value += math.mul(predictedRotation, dlambdaQ).value * invRotationalMasses[particleIndex] / substeps;
orientationDeltas[particleIndex] = orientDelta;
orientationCounts[particleIndex]++;
if (rigidbodyIndex >= 0)
{
BurstMath.ApplyDeltaQuaternion(rigidbodyIndex,
predictedRotation,
-math.mul(orientations[particleIndex], dlambdaQ).value * rigidbodyAngularW,
rigidbodyAngularDeltas, inertialFrame.frame, stepTime);
}
}
lambdas[i] = lambda;
}
}
}
[BurstCompile]
public struct ApplyPinConstraintsBatchJob : IJob
{
[ReadOnly] public NativeArray<int> particleIndices;
[ReadOnly] public float sorFactor;
[NativeDisableContainerSafetyRestriction] [NativeDisableParallelForRestriction] public NativeArray<float4> positions;
[NativeDisableContainerSafetyRestriction] [NativeDisableParallelForRestriction] public NativeArray<float4> deltas;
[NativeDisableContainerSafetyRestriction] [NativeDisableParallelForRestriction] public NativeArray<int> counts;
[NativeDisableContainerSafetyRestriction] [NativeDisableParallelForRestriction] public NativeArray<quaternion> orientations;
[NativeDisableContainerSafetyRestriction] [NativeDisableParallelForRestriction] public NativeArray<quaternion> orientationDeltas;
[NativeDisableContainerSafetyRestriction] [NativeDisableParallelForRestriction] public NativeArray<int> orientationCounts;
[ReadOnly] public int activeConstraintCount;
public void Execute()
{
for (int i = 0; i < activeConstraintCount; ++i)
{
int p1 = particleIndices[i];
if (counts[p1] > 0)
{
positions[p1] += deltas[p1] * sorFactor / counts[p1];
deltas[p1] = float4.zero;
counts[p1] = 0;
}
if (orientationCounts[p1] > 0)
{
quaternion q = orientations[p1];
q.value += orientationDeltas[p1].value * sorFactor / orientationCounts[p1];
orientations[p1] = math.normalize(q);
orientationDeltas[p1] = new quaternion(0, 0, 0, 0);
orientationCounts[p1] = 0;
}
}
}
}
}
}
#endif