Files
HauntedBloodlines/Assets/Obi/Scripts/Common/Backends/Burst/Collisions/BurstLocalOptimization.cs
2025-05-29 22:31:40 +03:00

203 lines
10 KiB
C#

#if (OBI_BURST && OBI_MATHEMATICS && OBI_COLLECTIONS)
using System;
using System.Collections.Generic;
using UnityEngine;
using Unity.Collections;
using Unity.Jobs;
using Unity.Mathematics;
using Unity.Burst;
using System.Runtime.CompilerServices;
namespace Obi
{
public static class BurstLocalOptimization
{
/**
* point in the surface of a signed distance field.
*/
public struct SurfacePoint
{
public float4 bary;
public float4 point;
public float4 normal;
}
public interface IDistanceFunction
{
void Evaluate(float4 point, float4 radii, quaternion orientation, ref SurfacePoint projectedPoint);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static void GetInterpolatedSimplexData(int simplexStart,
int simplexSize,
NativeArray<int> simplices,
NativeArray<float4> positions,
NativeArray<quaternion> orientations,
NativeArray<float4> radii,
float4 convexBary,
out float4 convexPoint,
out float4 convexRadii,
out quaternion convexOrientation)
{
convexPoint = float4.zero;
convexRadii = float4.zero;
convexOrientation = new quaternion(0, 0, 0, 0);
for (int j = 0; j < simplexSize; ++j)
{
int particle = simplices[simplexStart + j];
convexPoint += positions[particle] * convexBary[j];
convexRadii += radii[particle] * convexBary[j];
convexOrientation.value += orientations[particle].value * convexBary[j];
}
}
public static SurfacePoint Optimize<T>(ref T function,
NativeArray<float4> positions,
NativeArray<quaternion> orientations,
NativeArray<float4> radii,
NativeArray<int> simplices,
int simplexStart,
int simplexSize,
ref float4 convexBary,
out float4 convexPoint,
int maxIterations = 16,
float tolerance = 0.004f) where T : struct, IDistanceFunction
{
var pointInFunction = new SurfacePoint();
// get cartesian coordinates of the initial guess:
GetInterpolatedSimplexData(simplexStart, simplexSize, simplices, positions, orientations, radii, convexBary, out convexPoint, out float4 convexThickness, out quaternion convexOrientation);
// for a 0-simplex (point), perform a single evaluation:
if (simplexSize == 1 || maxIterations < 1)
function.Evaluate(convexPoint, convexThickness, convexOrientation, ref pointInFunction);
// for a 1-simplex (edge), perform golden ratio search:
else if (simplexSize == 2)
GoldenSearch(ref function, simplexStart, simplexSize, positions, orientations, radii, simplices, ref convexPoint, ref convexThickness, ref convexOrientation, ref convexBary, ref pointInFunction, maxIterations, tolerance * 10);
// for higher-order simplices, use general Frank-Wolfe convex optimization:
else
FrankWolfe(ref function, simplexStart, simplexSize, positions, orientations, radii, simplices, ref convexPoint, ref convexThickness, ref convexOrientation, ref convexBary, ref pointInFunction, maxIterations, tolerance);
return pointInFunction;
}
// Frank-Wolfe convex optimization algorithm. Returns closest point to a simplex in a signed distance function.
private static void FrankWolfe<T>(ref T function,
int simplexStart,
int simplexSize,
NativeArray<float4> positions,
NativeArray<quaternion> orientations,
NativeArray<float4> radii,
NativeArray<int> simplices,
ref float4 convexPoint,
ref float4 convexThickness,
ref quaternion convexOrientation,
ref float4 convexBary,
ref SurfacePoint pointInFunction,
int maxIterations,
float tolerance) where T : struct, IDistanceFunction
{
for (int i = 0; i < maxIterations; ++i)
{
// sample target function:
function.Evaluate(convexPoint, convexThickness, convexOrientation, ref pointInFunction);
// find descent direction:
int descent = 0;
float gap = float.MinValue;
for (int j = 0; j < simplexSize; ++j)
{
int particle = simplices[simplexStart + j];
float4 candidate = positions[particle] - convexPoint;
// here, we adjust the candidate by projecting it to the engrosed simplex's surface:
candidate -= pointInFunction.normal * (radii[particle].x - convexThickness.x);
float corr = math.dot(-pointInFunction.normal, candidate);
if (corr > gap)
{
descent = j;
gap = corr;
}
}
// if the duality gap is below tolerance threshold, stop iterating.
if (gap < tolerance)
break;
// update the barycentric coords using 2/(i+2) as the step factor
float step = 0.3f * 2.0f / (i + 2);
convexBary *= 1 - step;
convexBary[descent] += step;
// get cartesian coordinates of current solution:
GetInterpolatedSimplexData(simplexStart, simplexSize, simplices, positions, orientations, radii, convexBary, out convexPoint, out convexThickness, out convexOrientation);
}
}
private static void GoldenSearch<T>(ref T function,
int simplexStart,
int simplexSize,
NativeArray<float4> positions,
NativeArray<quaternion> orientations,
NativeArray<float4> radii,
NativeArray<int> simplices,
ref float4 convexPoint,
ref float4 convexThickness,
ref quaternion convexOrientation,
ref float4 convexBary,
ref SurfacePoint pointInFunction,
int maxIterations,
float tolerance) where T : struct, IDistanceFunction
{
var pointInFunctionD = new SurfacePoint();
float4 convexPointD, convexThicknessD;
quaternion convexOrientationD;
float gr = (math.sqrt(5.0f) + 1) / 2.0f;
float u = 0, v = 1;
float c = v - (v - u) / gr;
float d = u + (v - u) / gr;
for (int i = 0; i < maxIterations; ++i)
{
// if the gap is below tolerance threshold, stop iterating.
if (math.abs(v - u) < tolerance * (math.abs(c) + math.abs(d)))
break;
GetInterpolatedSimplexData(simplexStart, simplexSize, simplices, positions, orientations, radii, new float4(c, 1 - c, 0, 0), out convexPoint, out convexThickness, out convexOrientation);
GetInterpolatedSimplexData(simplexStart, simplexSize, simplices, positions, orientations, radii, new float4(d, 1 - d, 0, 0), out convexPointD, out convexThicknessD, out convexOrientationD);
function.Evaluate(convexPoint, convexThickness, convexOrientation, ref pointInFunction);
function.Evaluate(convexPointD, convexThicknessD, convexOrientationD, ref pointInFunctionD);
float4 candidateC = positions[simplices[simplexStart]] - pointInFunction.point;
float4 candidateD = positions[simplices[simplexStart + 1]] - pointInFunctionD.point;
candidateC -= pointInFunction.normal * (radii[simplices[simplexStart]].x - convexThickness.x);
candidateD -= pointInFunctionD.normal * (radii[simplices[simplexStart + 1]].x - convexThicknessD.x);
if (math.dot(-pointInFunction.normal, candidateC) < math.dot(-pointInFunctionD.normal, candidateD))
v = d;
else
u = c;
c = v - (v - u) / gr;
d = u + (v - u) / gr;
}
float mid = (v + u) * 0.5f;
convexBary.x = mid;
convexBary.y = (1 - mid);
GetInterpolatedSimplexData(simplexStart, simplexSize, simplices, positions, orientations, radii, convexBary, out convexPoint, out convexThickness, out convexOrientation);
function.Evaluate(convexPoint, convexThickness, convexOrientation, ref pointInFunction);
}
}
}
#endif